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In the last meeting, we proved (two thirds of) the fundamental theorem of optimal transport,
where we note that being optimal is indeed an instrinsic property that depends on the support of
the transportation plan. With this theorem we were able to recover a special case of the Brenier’s
theorem: in Rd when Monge map exists, it must be the gradient of some convex function. Let us
first recall the theorem.

Theorem 1. Fundamental theorem of optimal transport.

If c is continuous and bounded from below and for some f ∈ L1(µ), g ∈ L1(ν) we have for all
(x, y) ∈ X × Y ,

c(x, y) ≤ f(x) + g(y), (1)

then TFAE:

(a) γ ∈ Γ(µ, ν) is optimal.

(b) supp(γ) is c-cyclically monotone.

(c) There exists a c-concave function ϕ such that ϕ+ ∈ L1(µ) and supp(γ) ⊂ ∂c+ϕ.

In this meeting, we will move on to discuss several methods for solving optimal transport when the
underlying space is discrete and of finite cardinality.

1 Dual ascent method

Recall the dual formulation of Kantorovich’s problem,

max

∫
ϕdµ+

∫
ψ dν

subject to ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y,
ϕ ∈ L1(µ), ψ ∈ L1(ν).

(2)

In the discrete case, ϕ, µ, µ, ν are all vectors, c is encoded in the cost matrix C where Cij = c(i, j),
and the coupling γ ∈ Π(µ, ν) is represented by the coupling matrix P where the sum over the i-th
row gives µ(i); and j-th column ν(j). For simplicity, we use the notations interchangably.
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The primal problem, minimum weight bipartite matching, can be solved by Hungarian algorithm,
and the dual problem can be cast into a maximum flow problem that we are familiar with: we can
solve integer flow exactly using Ford-Fulkerson, or say Edmonds-Karp, in time polynomial in the
number of dual variables.

2 Some notions from information theory

We will focus in this section discrete probability spaces, the case for continuous probability spaces
are sometimes not analogous and often induces headaches. In this section, we will write random
variables in capital letters, and use caligraphical letters or Ω for the underlying sample spaces.

Let X be an r.v. on (Ω,F ,P) with |Ω| = n < ∞ and write pi = P(X = i). The entropy of X is
defined as

H(X) = −
∑
i∈X

pi log pi ≥ 0, (3)

which quantifies the uncertainty in the random variable. Subject to moment constraints of X (e.g.,
EXk = γk), the entropy-maximizing distribution will always be exponential family with the moment
as its sufficient statistics. For example, the uniform distribution on Ω has the largest entropy of
log|Ω|; in all distributions with prescribed second moment, Guassians with scale σ has the largest
differential entropy 1

2 ln(2πσ), which unlike discrete case, can be in general negative.

Given two r.v.s X on X and Y on Y, we can discuss their joint entropy H(X,Y ), conditional
entropy H(X|Y ), and if they are defined on the same probability space Ω, cross entropy H(X;Y ),
relative entropy (or KL divergence) D(X‖Y ), and mutual information I(X;Y ). Denote by
p(·) the pmf, we have

H(X,Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y)

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y) = H(X,Y )−H(Y )

H(X;Y ) = −
∑
x∈Ω

P(X = x) logP(Y = x)

D(X‖Y ) =
∑
x∈Ω

P(X = x) log
P(X = x)

P(Y = x)
= H(X;Y )−H(X)

I(X;Y ) = D(p(X,Y )‖p(X)p(Y )) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ).

(4)

We now remark a few properties.

• By Jensen’s inequality, D(X‖Y ) ≥ 0 and is zero iff X and Y are equal in distribution. It
follows that I(X;Y ) ≥ 0 and is zero iff X and Y are independent.

• Noting the Hessian of H(X), ∇2H(X) is negative (semi)definite, hence H(·) is concave.
Furthermore, noting

∇2H(X) = −diag(pi) ⇒ ∇2H(X)− 1 · I ≺ 0, (5)

since pi = P(X = i) < 1. That is, H(·) is 1-concave.
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3 Entropic regularization for Kantorovich’s problem

Given a coupling matrix P , we can define

H(P ) = −
∑
ij

Pij logPij , (6)

and consider the regularized Kantorovich’s problem:

min
γ∈Π(µ,ν)

〈γ, c〉 − εH(γ) = tr(P>C)− εH(P ). (7)

Noting the objective is ε-convex, it has a unique optimal solution P ε. Furthermore, we have the
following theorem regarding its behaviour as we vary ε.

Theorem 2. Convergence with ε. As ε→ 0,

P ε → arg minP∈Π(µ,ν){−H(P ) : tr(P>C) = OPT}. (8)

As ε→∞,
P ε → µ⊗ ν. (9)

Proof. Note since µ and ν are fixed, regularizing on H(P ) is equivalent to regularizing on the mutual
information between πX#γ and πY#γ, hence as ε→ 0, P ε is pushed to be µ⊗ ν. On the other hand,
as ε→ 0, noting for any optimal plan P ,

tr(P>C) ≤ tr(P>ε C), tr(P>ε C)− tr(P>C) ≤ ε (H(P ε)−H(P )) , (10)

which implies
0 ≤ tr(P>ε C)− tr(P>C) ≤ ε (H(P ε)−H(P )) . (11)

Hence as ε→ 0, P ε → P ∗ (limit by the compactness of the set of coupling wrt the narrow topology)
such that P ∗ is optimal and is entropy-maximizing among all optimal plans.
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