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In the last meeting, we went through Monge’s and Kantorovich’s formulation of the optimal transport
problem, the dual formulation of Kantorovich’s relaxation, the Wasserstein Wp distance, and showed
that Kantorovich’s problem is always solvable. It remains unclear at this moment, how can we find
them, if they always exist?

Today, we will take the first step by focusing on the structure of the optimal transport plans,
namely, what are the necessary and sufficient conditions for the optimal transport plan? We will first
introduce tools from convex analysis, using which we are able to prove the fundamental theorem
of optimal transport and understand its nice geometric implications. We start by recapping what
we did last time.

1 Recap

Recall that given two Polish spaces X, Y , µ ∈ P(X), ν ∈ P(Y ), and some cost c : X×Y → R∪{∞}
that is measurable, Monge’s optimal transport problem, aims at

min
T

EZ∼µ[c(Z, T (Z)] =

∫
X
c(x, T (x)) dµ,

subject to T#µ = ν.

(1)

Any maps T that preserves mass is called a transport map. However, Monge’s formulation may
be ill-posed, Kantorovich’s relaxation circumvents this issue, where we instead

min
γ

E(x,y)∼γ [c(x, y)] =

∫
X×Y

c(x, y) dγ(x, y),

subject to γ ∈ Π(µ, ν),

(2)

where
Π(µ, ν) :=

{
γ ∈ P(X × Y ) : πX#γ = µ, πY#γ = ν

}
(3)

∗This note is based on [PC+19] and [AG13], and was presented at Penn optimal transport reading group.
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is the set of all couplings between µ and ν, and π(·) is the natural projection. Kantorovich’s problem
also assumes a dual formulation:

max

∫
ϕdµ+

∫
ψ dν

subject to ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y,
ϕ ∈ L1(µ), ψ ∈ L1(ν).

(4)

Furthermore, we have

inf
γ∈Π(µ,ν)

∫
c(x, y) dγ(x, y) = sup

ϕ,ψ

∫
ϕdµ+

∫
ψ dν, (5)

under mild assumptions.

2 Some notions from convex analysis

We assume throughout the spaces X and Y are Polish, µ ∈ P(X), ν ∈ P(Y ), and the cost function
c : X × Y → R ∪ {∞} is measurable. Given the cost function c, we can define several transforms.

Definition 1. c-Transforms. Let ϕ : X → R ∪ {±∞}, ψ : Y → R ∪ {±∞},

• their c+-transforms ϕc+ : Y ∪ {−∞} and ψc+ : X ∪ {−∞} are defined as

ϕc+(y) := inf
x∈X
{c(x, y)− ϕ(x)} , ψc+(x) := inf

y∈Y
{c(x, y)− ψ(y)} , (6)

• their c−-transforms1ϕc− : Y ∪ {+∞} and ψc− : X ∪ {+∞} are defined as

ϕc−(y) := sup
x∈X
{c(x, y)− ϕ(x)} , ψc−(x) := sup

y∈Y
{c(x, y)− ψ(y)} . (7)

With this definition, we observe the following proposition.

Proposition 2. Let ϕ, φ : X → R ∪ {±∞}, c given, then

• ϕ ≤ φ implies ϕc+ ≥ φc+.

• (ϕc+)c+ ≥ ϕ.

• ((ϕc+)c+)c+ = ϕc+.

Proof. The first property is by definition:

ϕc+ = inf
x
c(x, y)− ϕ(x) ≥ inf

x
c(x, y)− φ(x) = φc+ . (8)

The second property is by noting for any x ∈ X, infz∈X (c(z, y)− ϕ(z)) ≤ c(x, y)− ϕ(x):

(ϕc+)c+(x) = inf
y
c(x, y)− ϕc+(y) = inf

y∈Y

{
c(x, y)− inf

z∈X
(c(z, y)− ϕ(z))

}
≥ inf

y∈Y
{c(x, y)− c(x, y) + ϕ(x)} = ϕ(x).

(9)

1Also known as the Legendre transform.

2



The last property is by combining the first two:

(ϕc+)c+ ≥ ϕ ⇒ ((ϕc+)c+)c+ ≤ ϕc+ , (ϕc+)c+ ≥ ϕ ⇒ ((ϕc+)c+)c+ ≥ ϕc+ . (10)

If we let ϕ, ψ, and c be the same as the dual formulation of Kantorovich’s relaxation, and write S
for the feasible set for ϕ and ψ, i.e.,

S := {(ϕ,ψ) : ϕ ∈ L1(µ), ψ ∈ L1(ν), ϕ(x) + ψ(y) ≤ c(x, y) ∀(x, y) ∈ X × Y } . (11)

For any fixed ϕ, in order for (ϕ,ψ) ∈ S, it is necessary that ψ(y) ≤ c(x, y)− ϕ(x) for all x, y, and
hence ϕc+ = infx∈X c(x, y)− ϕ(x) gives the largest possible ψ such that (ϕ,ψ) is still feasible. More
precisely, we have the following proposition.

Proposition 3. Let ϕ, ψ, c be the same as in the dual formulation of Kantorovich’s problem, S the
feasible set, we have

• (ϕ,ϕc+), (ψc+ , ψ) ∈ S.

• Furthermore,

〈ϕ, µ〉+ 〈ψ, ν〉 ≤ 〈ϕ, µ〉+ 〈ϕc+ , ν〉 , 〈ϕ, µ〉+ 〈ψ, ν〉 ≤ 〈ψc+ , µ〉+ 〈ϕ, ν〉 . (12)

The proof is left to the reader; a tricky part is to actually show ϕc+ ∈ L1(ν) (resp. ψc+ ∈ L1(µ)),
which is easier when we assume c ∈ L1(µ× ν). Although it may seems promising at the first glance
that to solve the dual problem by iterating

〈ϕ, µ〉+ 〈ψ, ν〉 ≤ 〈ϕ, µ〉+ 〈ϕc+ , ν〉 ≤ 〈(ϕc+)c+ , µ〉+ 〈ϕc+ , ν〉 ≤ · · · , (13)

the fact that ((ϕc+)c+)c+ = ϕc+ eliminates this possibility (unless there are additional structures of
the problem available). Before we dive into the main theorems, we introduce a few more notions.

Definition 4. Cyclical and c-cyclical monotonicity. A set Γ ⊂ X × Y is cyclically monotone
if for any N ∈ N, {(xi, yi) ∈ X × Y }Ni=1 ⊂ Γ we have∑

i∈[N ]

〈xi, yi〉 ≥
∑
i∈[N ]

〈
xi, yσ(i)

〉
, ∀σ ∈ SN , (14)

where SN is the set of permutations on N elements.

Analogously, Γ ⊂ X × Y is c-cyclical monotone if for any N ∈ N, {(xi, yi) ∈ X × Y }Ni=1 ⊂ Γ∑
i∈[N ]

c(xi, yi)≤
∑
i∈[N ]

c(xi, yσ(i)), ∀σ ∈ SN . (15)

Note the reverse in the direction of the inequality. By definition, cyclical monotone sets are c-cyclical
monotone under c = −〈·, ·〉 up to a constant.

Definition 5. c-concavity/convexity. A function ϕ : X → R ∪ {−∞}, is c-concave (resp. c-
convex) if there exists ψ : Y → R∪{−∞} such that ϕ = ψc+ (resp. ϕ = ψc−). Similar definitions for
any function ψ : Y → R∪{−∞}. By symmetry, the −∞ can be replaced by +∞ in above definitions.
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In practise, it suffices to work with one of them, e.g., c-concavity, since ϕ is c-convex iff −ϕ is
c-concave. The name may due to the following claim.

Claim 6. If c is convex, ϕ is c-convex iff ϕ is convex and l.s.c.

The need for being l.s.c. in Claims 6 is from the fact that we allow functions to assume values from
the extended real line. The forward implication is proved by definition; and the other direction can
be argued from contrapositive.

Definition 7. c-superdifferential/subdifferential. Let ϕ : X → R ∪ {−∞} be c-concave. The
c-superdifferential ∂c+ϕ ⊂ X × Y and c-subdifferential ∂c−ϕ ⊂ X × Y are defined as

∂c+ϕ := {(x, y) ∈ X × Y : ϕ(x) + ϕc+(y) = c(x, y)} ,
∂c−ϕ := {(x, y) ∈ X × Y : ϕ(x) + ϕc−(y) = c(x, y)} .

(16)

We will mainly work with ∂c+ . Given y, write ∂c+ϕ(y) be the set of x ∈ X such that (x, y) ∈ ∂c+ϕ.
Just like many other things with a name prefixed by “super”, c-superdifferentials may be equivalently
defined by an inequality,

(x, y) ∈ ∂c+ϕ ⇔ ϕ(x)− c(x, y) ≥ c(x′, y)− ϕ(x′), ∀x′ ∈ X, (17)

and you can now guess the equivalent alternative definition for subdifferentials.

Indeed, ∂c+ϕ and ∂c−ϕ are in some sense the complementary slackness condition for the dual
problem. In the next section we will see how to characterize optimally using these convex anlaysis
notions, and the conditions for strong duality are also sufficient and necessary for this formulation,
as we may reasonably anticipate.

3 Fundamental theorem of optimal transport

We are now ready for the fundamental theorems that characterize the sufficient and necessary
condition for optimal transport plans. We start from an example, consider the case where X = Y = R,
µ, ν supported on finite subsets, and with c(x, y) = |x− y|2, then the optimal plan γ∗ must be such
that

πX#γ
∗ = µ, πY#γ

∗ = ν, (18)

which translates to the following equivalent condition points xi, yi:∑
i∈[N ]

|xi − yi|2 ≤
∑
i∈[N ]

|xi − yσ(i)|2, (19)

for any point (xi, yi) and any valid N that γ∗ put non-zero mass on. Noting in this example, supp(γ∗)
is c-cyclical monotone, and by openning up squares, supp(γ) is indeed cyclical monotone in the
ordinary sense, which is indeed a general phenomena.

Theorem 8. Necessary condition for optimal transport plans. If c is continuous and bounded
from below, then the support of optimal transport plan γ is necessarily c-cyclical monotone.

In fact, this is almost sufficient; and we can relax continuity to l.s.c. But for the time being, let’s
see why this is the case. The key here lies in the smoothness of c and the definition of c-cyclical
monotone.
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Proof. 2 First note that from last meeting, we know c being l.s.c. implies the Kantorovich’s problem
is solvable. Let γ be an optimal transport plan whose domain is not c-cyclical monotone, then for
some N ∈ N, {(xi, yi)}N , there is some permutation σ ∈ SN such that∑

i∈[N ]

c(xi, yi)−
∑
i∈[N ]

c(xi, yσ(i)) = ∆ > 0. (20)

Now consider a small δ-ball Bi := Bδ(xi, yi) around (xi, yi). The continuity of c implies that if we
make δ small enough, for any (x, y) ∈ Bi we have

c(x, y) ≥ c(xi, yi)− ε, (21)

and any (x, y) ∈ B′i := Bδ(xi, yσ(i)),

c(x, y) ≤ c(xi, yσ(i)) + ε. (22)

Now we will construct another plan γ̃ that is a coupling but with a strictly lower cost. First since
(xi, yi) ∈ supp(γ), we have γ(Bi), γ(B′i) > 0 for all i. We can thus define conditional measures
γi = γ|Bi where

γi(E) =
γ(E ∩Bi)
γ(Bi)

, ∀E ∈ B(X × Y ). (23)

Write µi = πX#γi, νi = πY#γi, and let γ̃i = µi ⊗ νσ(i)
3. Consider

γ̃ := γ − α
∑
i∈[N ]

γi + α
∑
i∈[N ]

γ̃i, (24)

where α > 0 is chosen such that γ̃ is positive. We can easily check that πX# γ̃ = µ, πY#γ̃ = ν, and∫
cdγ −

∫
cdγ̃ = α

∑
i∈[N ]

(∫
X×Y

cdγi −
∫
X×Y

c dγ̃i

)
. (25)

By construction, noting γi (resp. γ′i) concentrates on Bi (resp. B
′
i), we have∫

X×Y
cdγi ≥

1

γ(Bi)

∫
Bi

(c(xi, yi)− ε) dγ = c(xi, yi)− ε, (26)

∫
X×Y

cdγ̃i =

∫
X×Y

cdµi dνσ(i) ≤
1

γ(B′i)

∫
B′i

(
c(xi, yσ(i)) + ε

)
dγ = c(xi, yσ(i)) + ε. (27)

Hence ∫
cdγ −

∫
cdγ̃ ≥ α

∑
i∈[N ]

c(xi, yi)−
∑
i∈[N ]

c(xi, yσ(i)− 2Nε

 , (28)

and if we set ε ≤ ∆/(2N), γ̃ is strictly better than γ, a contradiction.
2This proof is due to [San19].
3In fact any element in Π(µi, νσ(i)) works.
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Theorem 9. Fundamental theorem of optimal transport.

If c is continuous and bounded from below and for some f ∈ L1(µ), g ∈ L1(ν) we have for all
(x, y) ∈ X × Y ,

c(x, y) ≤ f(x) + g(y), (29)

then TFAE:

(a) γ ∈ Γ(µ, ν) is optimal.

(b) supp(γ) is c-cyclically monotone.

(c) There exists a c-concave function ϕ such that ϕ+ ∈ L1(µ) and supp(γ) ⊂ ∂c+ϕ.

Note that under the condition of this theorem, the strong duality holds, a result stated by not proved
last time, as we expected earlier.

Proof.

• (a) ⇒ (b). Proven.

• (b) ⇒ (c). Omitted. It suffices to show that for any c-cyclically monotone Γ ⊂ X×Y , there is
some c-concave function ϕ such that Γ ⊂ ∂c+ϕ, and ϕ+ ∈ L1(µ). This is a result from convex
analysis.

• (c) ⇒ (a). Let ϕ be given, since supp(γ) ⊂ ∂c+ϕ, ϕ(x) + ϕc+(y) = c(x, y) for all (x, y) ∈
supp(γ). But ϕ(x) + ϕc+(y) ≤ c(x, y) for all (x, y) ∈ X × Y , hence for any γ′ ∈ Π(µ, ν),∫

c dγ =

∫
X×Y

ϕ(x) + ϕc+(y) dγ(x, y) =

∫
ϕdµ+

∫
ϕc+ dν

=

∫
X×Y

ϕ(x) + ϕc+(y) dγ′(x, y) ≤
∫
cdγ′.

(30)

4 Consequences

4.1 Direct consequences of the fundamental theorem

1. The condition on the existence of f ∈ L1(µ), g ∈ L1(ν) is only needed for proving (b) ⇒
(c). In other words, even c does not satisfy this condition, (b) will still be necessary and (c)
sufficient for γ being optimal.

2. The sufficient condition (c) implies that being optimal is a property of the support being
cyclically monotone wrt the given cost. This is by itself free of µ, ν. Hence if γ is optimal, for
any measure γ′ whose support is contained in supp(γ), γ′ is optimal for transporting πX#γ

′ to
πY#γ

′ under the same cost.

3. If Monge map T exists, the support of (id×T )#µ is c-cyclically monotone. Hence if this support
is the whole space X, then T is the optimal for transporting any µ ∈ P(X) to ν = T#µ. Indeed,
this gives us a charaterization of Monge map - its image must be in the c-superdifferential
of some c-concave function.
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4. A similar but stronger result holds for optimal plans: if supp(γ) ⊂ ∂c+ϕ for some optimal
transport plan γ, then all optimal plan γ′ must also be such that supp(γ′) ⊂ ∂c+ϕ.

4.2 A concrete example

Let X = Y = Rd, and c the L2 distance, we know if µ is absolutely continuous wrt the Lebesgue
measure λ, the optimal plan γ is supported on the graph of a Monge map T , i.e.,

γ = (id, T )#µ. (31)

The necessary condition, formulated in terms of c-convex functions, implies there is some c-convex
function ϕ such that

T (x) ⊂ ∂c−ϕ, (32)

but ϕ is convex since c is convex, and ∂c−ϕ is indeed the ordinary subgradient. At the point x of
continuity of ϕ, we have

T (x) = ∇ϕ(x), (33)

and this gives us a characterization of Monge maps in this setting - it is the gradient of some convex
function (λ-a.e.). This is a special case of the Brenier’s theorem (as in the COT textbook) we
discussed last time.
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