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1 Some notions from probability

We will assume as given a Polish space (complete, separable metric space) (X, d) on which we may
associate topology τ and Borel σ-algebra F to define the set of bounded continuous functions Cb and
the set of probability measures P(X) :=M1

+(X). The support supp(µ) of a probability measure
µ ∈M1

+ is the smallest closed set whose complement is a µ-null set.

Given two Polish spaces X,Y , µ ∈ P(X) and a map T : X → Y . The push forward of µ by T ,
ν = T#µ ∈ P(Y ) is defined by

ν(B) = ν(T−1(B)) = µ(x : T (x) ∈ B), ∀B ∈ B(Y )

⇔
∫
f dv =

∫
(f ◦ T ) dµ, ∀f ∈ Cb(Y ).

(1)

For any ϕ ∈ Cb(Y ), the pull back of ϕ by T , T#ϕ is defined as T ◦ ϕ : X → R. If we view
integration between ϕ and µ as a bilinear map 〈·, ·〉 : Cb × P → R, T# and T# are adjoint in the
sense that ∫

Y
ϕdT#µ = 〈ϕ, T#µ〉 =

〈
T#ϕ, µ

〉
=

∫
X
T#ϕdµ. (2)

If X = Y = Rd, µ, ν ∈ P(X) are absolutely continuous wrt the Lebesgue measure (i.e., they admit
densities ρ1 and ρ2), and T homeomorphic, by the change of variable formula, for any ϕ ∈ Cb(Y ),∫

Rd

ϕdT#µ =

∫
Rd

ϕ(y)ρ2(y) dy =

∫
Rd

ϕ(T (x))ρ2(T (x))|detT ′| dx

=

∫
Rd

T#ϕρ2(T (x))|detT ′|dx ≡
∫
Rd

T#ϕρ1(x) dx.

(3)

This implies
ρ1(x) = ρ2(T (x)) · |detT ′(x)|, a.e., (4)

that is,

ν = T#µ⇒
dν

dx
= |detT ′| dµ

dx
, (5)

which means push forward acts linearly on densities, and indeed the Radon-Nykodym derivative
dν
dµ = |detT ′|.
∗This note is based on [PC+19] and [AG13], and was presented at Penn optimal transport study group.
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2 Monge’s and Kantorovich’s formulation

Definition 1. Monge’s optimal transport problem.

Let c : X × Y → R ∪ {+∞} be a measurable map, µ ∈ P(X), ν ∈ P(Y ). Monge’s optimal transport
problem aims at

min
T

EZ∼µ[c(Z, T (Z)] =

∫
X
c(x, T (x)) dµ,

subject to T#µ = ν,

(6)

that is, among all transport map T.

When |X|, |Y | <∞, µ, ν discrete, Monge’s problem is equivalent to the minimum weight bipartite
matching problem and can be solved by (integer) linear programming. When the solution exists, the
minimizers include an integral solution, which can be argued the same way as we do for maximum
matching, maximum set cover and other problems of similar flavour.

Monge’s formulation may be ill-posed as it is possible that -

• No map satisfies the mass conservation constraint. E.g., when |X| < |Y |.

• From an optimization’s perspective, given a sequence of T (k) such that T (k)
# µ = ν, T (k) → T

weakly for some T does not imply T#µ = ν. E.g., µ = x1{0≤x≤1}, ν = (δ−1 + δ1)/2, and
T (k) = f(kx), where f(x) = 1{0≤x<1/2} − 1{1/2≤x≤1}.

Furthermore, even the optimal transport map (the Monge map) exists, it may be asymmetric.
Kantorovich’s relaxation circumvent these potential pathologies by allowing the split of mass.

As an example, if µ, ν admits densities, this is equivalent to say that we move the mass at x in
X probabilistically to Y according to p(y|x). The cost at x would be

∫
Y c(x, y)p(y|x) dy and the

total cost would be integrating again wrt p(x),
∫
X p(x)

∫
Y c(x, y)p(y|x) dy dx. Let γ ∈ P(X × Y )

has density p(x, y), this is equivalent to minimizing

E(x,y)∼γc(x, y) =

∫
X×Y

c(x, y)p(x, y) dx dy. (7)

The mass conservation constraint would be γ has p(x) as marginal on X and p(y) on Y . In the more
general case where µ, ν do not necessarily admit densities, we have the following.

Definition 2. Kantorovich’s relaxation.

Let c : X × Y → R ∪ {+∞} be a measurable map, µ ∈ P(X), ν ∈ P(Y ). Kantorovich’s optimal
transport problem aims at

min
γ

E(x,y)∼γ [c(x, y)] =

∫
X×Y

c(x, y) dγ(x, y),

subject to γ ∈ Π(µ, ν),

(8)

where
Π(µ, ν) :=

{
γ ∈ P(X × Y ) : πX#γ = µ, πY#γ = ν

}
(9)

is the set of all couplings between µ and ν, π(·) is the natural projection.
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In other words, the coupling contains all probability measures on X × Y whose marginal on X (resp.
Y ) is µ (resp. ν).

The advantages of Kantorovich’s relaxation include

• The constraint set Π is non empty (it contains µ× ν).

• Π is convex and compact (wrt the narrow topology, for our purposes this means closed under
weak convergence).

• The objective is linear.

• Contains all feasible points to the Monge’s formulation (given T such that T#µ = ν, (id×T )#µ =
µ× ν ∈ Π).

Furthermore, the minimizer to Kantorovich’s problem always exists, as shown next.

Theorem 3. If c(·, ·) is lower semi-continuous (l.s.b., ∀x0, lim infx→x0 f(x) ≥ f(x0)) and bounded
from below, then the solution to Equation (8) always exists.

Proof. This is a result from the direct method in the calculus of variations, which asserts that
the minimizer of a bounded below, l.s.c. function on a compact set always exists1. To see this,
let f be a function defined on a compact set Ω that is bounded from below and l.s.c. Then
there exists a sequenece xk ∈ Ω such that lim f(xk) = infx∈Ω f(x) =: f0. Compactness implies
xk is bounded, hence there is a convergent subsequence xk′ → x0 ∈ Ω. By lower semi-continuity,
f0 ≤ f(x0) ≤ lim inf f(xk) = f0.

The proof of the compactness of Π replies on the Prokhov’s theorem, and the l.s.c. of the objective
from the l.s.c. assumption on c(·, ·).

To illustrate the idea, first consider a sequence of γn ∈ Π(µ, ν) that converges weakly to γ. We must
now show that γ ∈ Π(µ, ν). Indeed for any ϕ ∈ Cb(X),∫

X
ϕdπX#γ =

∫
X×Y

ϕdγ = lim
n→∞

∫
X×Y

ϕdγn = lim
n→∞

∫
X
ϕdπX#γn =

∫
X
ϕdµ, (10)

which implies πX#γ = µ. Similarly πY#γ = ν, hence γ ∈ Π(µ, ν).

Now we will show γ 7→
∫
X×Y c dγ is l.s.c. Since c is l.s.c., we can approximate it by an increasing

sequence of bounded continuous functions cm such that c(x, y) = supm cm(x, y), ∀(x, y) ∈ X × Y .
Note that for any m, cm ∈ Cb(X × Y ), hence∫

cdγn ≥
∫
cm dγn, ∀m ⇒ lim inf

n

∫
cdγn ≥

∫
cm dγ, ∀m. (11)

Taking supremum over m we have

lim inf
n

∫
cdγn ≥ sup

m

∫
cm dγ =

∫
cdγ, (12)

by the monotone convergence theorem.
1The assumption on the compactness can be replaced by requiring the function to be coercive, that is, every

sequence with bounded function value is bounded.

3



Theorem 4. If c(·, ·) is continuous and µ non-atomic (i.e., does not contain any Dirac mass), then

inf{Monge} = min{Kantorovich}. (13)

Theorem 5. Brenier’s Theorem

Let X = Y = Rd, µ ∈ P(Rd) with finite second moment, then TFAE:

• µ is regular;

• For every ν ∈ P(Rd) with finite second moment, there exists only one transport plan from µ
to ν and the plan is induced by a map T .

Either one would imply the Monge map can be recovered by taking gradient of some convex function.

A c-c hypersurface (convex-minus-convex) in Rd is the set of the form

{(x, y) : x ∈ Rd−1, y ∈ R, y = f(x)− g(x)}, (14)

for some convex function f, g : Rd−1 → R. A measure µ is regular if µ(E) = 0 for every c-c
hypersurface E.

In the textbook, Theorem 2.1 asserts that if c is the L2 distance and µ admits a density, then the
Monge map is given by T = ∇Φ where the convex function Φ(x) = ‖x‖2/2−ϕ(x) and ϕ is the dual
potential.

3 The dual formulation

The Kantorovich’s formulation involves minimizing a linear functional with affine constraints. In the
case of discrete measurable spaces, this is a linear program and one can use the strong duality of the
LP to consider the dual problem. As we will see, a similar result holds in the general case.

Definition 6. Dual formulation of Kantorovich’s problem.

The problem given in Equation (8) is equivalent to

max

∫
ϕdµ+

∫
ψ dν

subject to ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y,
ϕ ∈ L1(µ), ψ ∈ L1(ν).

(15)

Furthermore, we have

inf
γ∈Π(µ,ν)

∫
c(x, y) dγ(x, y) = sup

ϕ,ψ

∫
ϕdµ+

∫
ψ dν. (16)

Proof. This argument is based on the min-max principle, where we construct a penalty term and
enlarge the feasible set.

Define for γ ∈M+(X × Y ), χ(γ) to be 0 if γ ∈ Π(µ, ν) and +∞ otherwise, then

inf
γ∈Π(µ,ν)

cdγ = inf
γ∈M+

∫
c dγ + χ(γ). (17)
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Now observe that the following is a valid candidate for χ:

χ(γ) = sup
(ϕ,ψ)∈Cb(X)×Cb(Y )

{∫
X
ϕdµ+

∫
Y
ψ dν −

∫
X×Y

(ϕ(x) + ψ(y)) dγ(x, y)

}
. (18)

Hence
inf

γ∈Π(µ,ν)

∫
cdγ = inf

γ∈M+

sup
ϕ,ψ

F (γ, ϕ, ψ;µ, ν), (19)

where we write

F (γ, ϕ, ψ;µ, ν) =

∫
X×Y

c(x, y) dγ(x, y) +

∫
X
ϕdµ+

∫
Y
ψ dν −

∫
X×Y

(ϕ(x) + ψ(y)) dγ(x, y). (20)

Observe that F is linear in γ (hence convex) and linear in ϕ, ψ (hence concave). Thus we can swap
the order of inf and sup to write

inf
γ∈Π(µ,ν)

∫
cdγ = sup

ϕ,ψ
inf

γ∈M+

F

= sup
ϕ,ψ

{∫
ϕdµ+

∫
ψ dν + inf

γ∈M+

∫
(c(x, y)− ϕ(x)− ψ(y)) dγ(x, y)

}
.

(21)

Consider the quantity

inf
γ∈M+

∫
(c(x, y)− ϕ(x)− ψ(y)) dγ(x, y), (22)

if ϕ(x) + ψ(y) ≤ c(x, y) for all x, y, setting γ to be the null measure would drive the infimum to
0; on the other hand if ϕ(x) + ψ(t) > c(x, y) for some (x0, y0), setting γ(n) = n · δ(x0,y0) makes the
infimum goes to −∞. Hence

inf
γ∈Π(µ,ν)

∫
cdγ = sup

ϕ,ψ

∫
ϕdµ+

∫
ψ dν, (23)

for L1 functions ϕ,ψ such that ϕ(x) + ψ(y) ≤ c(x, y) everywhere.

The next theorem gives condition for strong duality.

Theorem 7. Duality.

If c is continuous and bounded from below and for some f ∈ L1(µ), g ∈ L1(ν) we have for all
(x, y) ∈ X × Y ,

c(x, y) ≤ f(x) + g(y), (24)

then the minimum of the primal problem is equal to the supremum of the dual problem. Furthermore,
the supremum of the dual is attained.
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4 Wasserstein Wp distance

Given (X, d) Polish, the Wasserstein Wp distance, defined on P(X) is given by

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
dp(x, y) dγ(x, y) = sup

ϕ,ψ∈Cb(X)
ϕ(x)+ψ(y)≤dp(x,y)

∫
ϕdµ+

∫
ψ dν, (25)

that is, the optimal to the Kantorovich’s problem with dp being the cost. We will next prove Wp is
indeed a distance, which relies on the following lemmas.

Theorem 8. Disintegration. Let X, Y be Polish, µ ∈ P(X), T : X → Y , and ν = T#µ. Then
there exists a (ν-a.e.) unique family of measures {µy ∈ P(X)}y∈Y such that

• The map Φ(y) = µy is Borel measurable. That is, for every B ∈ B(Y ), the function ϕ(y) =
Φ(B) = µy(B) : Y → R is Borel measurable.

• µy concentrates on the fiber T−1(y), that is, for ν-a.e. y,

µy(X/T
−1(y)) = 0. (26)

• For any f : X → [0,∞], ∫
X
f(x) dµ =

∫
Y

∫
T−1(y)

f(x) dµy(x) dν. (27)

In other words, we can “decompose” the measure µ on X as a product of the push forward
measure and some unique measure on Y , in the sense that

dµ = dµy(x) dν. (28)

Theorem 9. Gluing-together lemma. Let X, Y , Z be Polish spaces and γXY ∈ P(X × Y ),
γY Z ∈ P(Y × Z) be such that

πY#γ
XY = πY#γ

Y Z . (29)
Then there exists γ ∈ P(X × Y × Z) such that

πX×Y# γ = γXY , πY×Z# γ = γY Z . (30)

Proof. Let µ = πY#γ
XY = πY#γ

Y Z ∈ P(Y ), by the third conclusion of the disintegration theorem, we
have the following decomposition

dγXY (x, y) = dγXYy (x) dµ(y), dγY Z(y, z) = dγY Zy (z) dµ(y). (31)

We can define γ to be such that

dγ(x, y, z) = dµ(y) d(γXYy × γY Zy )(x, z), (32)

which completes the proof.

Theorem 10. Wasserstein distance. Wp(·, ·) defines a distance on P(X) for p ≥ 1.

Proof. Write W = Wp, consider:

• Clearly2 W (µ, µ) = 0. Suppose W (µ, ν) = 0, let γ be an optimal transport plan, then
2Left as an exercise.
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W p =
∫
dp(x, y) dγ(x, y) = 0. Since d is a metric, γ(x, y) concentrates on the diagonal of

X ×X, i.e., γ({(x, x) : x ∈ X}) = 1. Hence the projection to the two components π1 and π2

are equal γ-a.e., hence µ = π1
#γ = π2

#γ = ν.

• Clearly W (µ, ν) = W (ν, µ).

• We now prove the triangle inequality. Let µ1, µ2, µ3 ∈ P(X), and γ12, γ23 ∈ P(X × X) be
optimal transport plans from µ1 to µ2 and µ2 to µ3 resp. By the gluing-together lemma, there
exists some γ ∈ P(X ×X ×X) such that

π12
# γ = γ12, π23

# γ = γ23. (33)

Then, writing X2 = X ×X, X3 = X ×X ×X, using Minkowski’s inequality,

W (µ1, µ3) ≤
(∫

X2

dp(x1, x3) d(π13
# γ)(x1, x3)

)1/p

=

(∫
X3

dp(x1, x3) dγ(x1, x2, x3)

)1/p

≤
(∫

X3

dp(x1, x2) dγ(x1, x2, x3)

)1/p

+

(∫
X3

dp(x2, x3) dγ(x1, x2, x3)

)1/p

=

(∫
X2

dp(x1, x2) dγ12(x1, x2)

)1/p

+

(∫
X2

dp(x2, x3) dγ23(x2, x3)

)1/p

= W (µ1, µ2) +W (µ2, µ3).

(34)

5 Examples

Example 11. Kronecker cost.

Let X = Y = Ω and c(x, y) = 1{x 6=y}, i.e., 1 if x 6= y and 0 otherwise. Then the Kantorovich’s
problem

inf
γ∈Π(µ,ν)

inf 1{x 6=y} dγ = inf
γ∈Π(µ,ν)

Ex,y∼γ1{x6=y} = sup
E∈B(Ω)

|µ(E)− ν(E)| ≡ ‖µ− ν‖TV . (35)

Example 12. 1-D case. Let X = Y = R and F,G by the CDF of µ, ν ∈ P(R), i.e.,

F (x) =

∫ x

−∞
dµ, G(x) =

∫ x

−∞
dν. (36)

Then
W p
p (µ, ν) =

∫
R
|F−1(x)−G−1(x)|p dx. (37)
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